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OPTIMAL PARAMETRIC STABILIZATION OF AN INVERTED PENDUlUPl* 

G. M. ROZZNRLAT 

Problem of optimal stabilization of the unstable upper position of equilibrium of 
a pendulum is studied using the external periodic forces. In the first case the 
force is applied to the hinge from which the pendulum is suspended (the vibrating 
suspension point /l-3/), and in the second case the force moment8 are applied to 
the rods clamped at the uppermost point of the pendulum. The problem of determin- 
ing such forces (or force moments) is solved for a given class of functions ensur- 
ing the optimal (in the ,sense of the minimum of the general index/4/) stabilisation 
of the pendulum and restricting, in addition, within the given limits, the displace- 
ment of the vibrating elements of the construction. 

1. Equations of motion. Pendulum with a moving point of suspension. Figure 
1 shows two masses M and m in the XOY plane, connected by a weightless rigid rod of length 

1. The mass m can move without friction along the y-axisinagroove containing a gapwhich 
enables a free motion of the rod. A hinge at the point m restricts the motion of the rod to 
the XOY plane. The generalized coordinates of the system in question are cp and P where rp 
is the angle between the rod and positive direction of the y-axis, and P is the ordinate of 
the moving mass m. The external forces acting on the system are: gravitational forces (O,- 

ML?I and (0, -mg) applied, respectively, to the masses M and m, the controlling force (0, 
p(t)) to the mass m, and the rotational force of friction in the hinge m generating a moment 
relative to the hinge axis and proportional to ip'. 

We write the kinetic energy of the system and the generalized forces (k>O is the co- 
efficient of friction), as follows: 

L, = l/m$P -I- ‘l,M IP cos* cpcp’” + (y’ - 1 sin ~cp')*l, Qy = -(m + M)g + P (t), Qq = Mgl sin rp - kv” 

and the Lagrange method yields the following equations of motion: 

@a +M)d' -MZ@~P(P'* +sincpm? = -(m+M)g+ F (t) (1.1) 

MPCp” - Mly” sin cp m Mgt sin cp - krp’ (1.2) 

Pendulum with moving rods. Figs.2 and 3 depict, in the system of fixed OXYZ axes, 
a rod hinged at 0. The axis of this hinge is directed along the z-axis, and ensures that 
the rod OD moves within the XOY plane. 

D. 
The rods DA and DA’ are hinged at the point 

The axis of the hinges supporting the rods DA and DA’ lies in the XOY plane 
and is either parallel to the z-axis (Fig.2), or perpendicular to the rod OD (Fig;3). 
The rods DA and DA’ are assumed homogeneous , rigid and identical, each of length 21 and 
IMSS m. The homogeneous, rigid rod OD has mass M and length L. 

Thus the hinged supports in the system are such, that the rod OD can move only in the 
XOY plane and the roda DA and DA’ either in the plane parallel to YOZ (Fig.21, or in 

the plane perpendicular to XOY and passing through OD (Fig.3). 
In accordance with the construction described we introduce the generalized coordinates of 

the system: v is the angle between OD and the positve direction of the y-axis, q1 is the 
angle between DA and either the vertical, or the line OD(Figs.2 and 3) and & is the 
ssme angle for the rod DA’. We ass- that the folLowing external forces act on the system: 
the forces of gravity to,-~g,O),(O, -mg,O), the control moments k$*l(t) and BiOr(t) applied, 
respectively, to the roda DA and DA’ and directed along the axis of the hinges towards D, 
and the friction at the hinge 0 responsible for the moment about the axis of the hinge and 
proportional to cp'. We assume, for simplicity, that the motion of the rods DA and DA’ is 
synrmetrical with respect to the XOY plane. This R priori holds when M*i(t)= -m'(t) = 
BP@) and the initial conditions (coordinates and velocities) of DA and DA' are synrmatri- 

cal with respect to the XOY plane. Such an assumption enables us to replace two general- 
ized coordinates rp, and q% by a single coordinate 9 =ql = --rp,. 
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The kinetic energies and generalized forces for the systems shown in Figs.2 and 3 are 

given, respectively, by 

L, = ‘l&L2q’B + 2 Pl,mLzq’2 + mlL sin cp sin $cp'q,' + a/smle$'e] 

Qcp = (MgLI2 + 2mgL) sin cp - kcp’, Q+ = 2[M” (t) f mgl sin*] 

L, = ‘lsMLeqS2 + 2 PI, ml”$‘z (1 + co9 4) + ‘f,mLa(p’2 + mlL cos $(p”I 

Qp = (MgLI2 + 2mgL + 2mgl (cos $) sin cp - kp' 

Q+ = 2 [M” (t) + mgl cos cp sin $1 

The factor 2 preceding the square brackets in the expressions for L, and L, reflects the 

presence of two, symmetrically moving rods DA and DA’. 
The Lagrange equations for the construction shown in Fig.2 are 

and for 

(ML/3 + 2mL)v” + kv’lL + 2ml (sin cp cos I/@*~ + sin cp sin $n#") = (M/2 + 2m)g sin cp 

V,mP~” + mlL (cos cp sin$(p'2 + sin cp sin ~ptp") = M" (t) + mgl sin+ 

the construction in Fig.3, 

(1.3) 

(1.4) 

(ML/3 + 2mL + 4ml cos q)q~” + (k/L - 4ml sin w')cp'= (M/2 + 2m (1 + 1 cos q/L))g sin cp (1.5) 

4/.+? (1 + cos2+)+** - 4/3 mla$'2 ~0s I$ sin $ + 2mlL sin I@*2 = M" (t) -/- mgl cos cp sin* (1.6) 

2. Formulation of the problem. Pendulum with movable point of suspension. 
We shall consider the motions described by the equations (1.1) and (1.2) in the neighborhood 
of the point cp = cp' = 0. Neglecting in (1.1) the terms of first and higher order of small- 
ness in rp and (p', we obtain 

y"= - g J-(t) 
mtM (2.1) 

Let us neglect in (1.2) the terms of second and higher order of smallness in tp and sub- 
stitute y" from (2.1). This yields 

(2.2) 

Let the control force F(t) satisfy the restrictions 

- F, < F (t) & F,, F, > 0, F, > 0, t ES IO, 00) (2.3) 
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We consider the period T> 0 , and pose the following prcblem: to find a T-periodic func- 
tion F(t) satisfying the conditions (2.3), ensuring the best (in the sense of a minimum value 
of the general index) stability of the solutions of (2.2) and such, that the equation (2.1) 
has a T-periodic solution lying in the prescribed neighborhood I 11 I d 809 8, > 0. 

We note that in /l-33/ the motion of the point of suspension was defined a Priori by 
y (t) = e sin ot or some other periodic function. Therefore the problem of determining the 
optimal control forces did not arise. 

Pendulum with moving rods. We shall consider the motion of the constructions de- 
picted in Figs.2 and 3 near the point q = q' = O.$ = x:2. Thus, we shall investigate the 
motion of the rod OD near the vertical, with the rods DA and DA' oscillating near the 
horizontal. Linearizing the equations (1.3)- (1.6) as before as carrying out the elementary 
transformations, we obtain 

-$ In PArl,” I - _lf” (t) - ,,,g& A$= .+ __I1 (2.5) 

(2.6) 

Linearization of (1.6) yields (2.5). 
Let the control moment M'(t) satisfy the restrictions 

- MI," < lIP (t) < N,", -Ir,O : 0: AI,” ; 0. t E IO: co) (2.7) 

we consider the period T> 0 and pose the following problem: to find T-periodic function 
M"(t) satisfying the conditions (2.7), ensuring the best (in the sens of the minimum value of 
the general index) stability of the solutions of (2.4) and (2.6) and such, that the equation 
(2.5) has a T-periodic solution lying in the given neighborhood 

and DA’ are regarded as the body and arms, 
1 A$ I < e,, so>-0. 

If OD,DA respectively of man, then the 
body is stabilized by the periodic up and down motions of the arms. Tfie authors of /5/ de- 
scribe a case when a man ensures the stabilization of his body by rotating his arms with in- 
creasing angular velocity. 

3. Formulation and solution of the generalized problem. Let C be the class 
of all piecewise continuous real scalar functions on IO. 00). We consider the following sub- 
sets of C: 

R (T, m,, m2) = {u E c : 14 (t) = u (t $ T), - m, -r; I! (1) Q m,, t E IO, m)) 

R,,(T, ml,m?)=(rr~R(T, ~11, m,):+ i u(~)dr=h 

hE[--PII, ma] I 
We require to find the function UE R(T, ml, m,), ensuring the minimum valueofthegeneral 

index of the equation 

i' = la + bu (t)l I, a > 0, b > 0 (3.1) 

and such, that the equation 

I" = u(t) - c, c > 0 

has a T-periodic solution satisfying the condition 

Is, 0) I Q sol t E IO, a) 

We note that in (3.1)- (3.3) a, b,c,e, are given positive 
the equation (3.2) has, as we know, no periodic solutions 

We now proceed to solve the problem in question. We 
and introduce the notation 

(3.2) 

(3.3) 

constants and cQ~ (when c>%, 
if u E R (T, ml, Ml. 
define arbitrarily h E I- ml, m,] 
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hfl = a - hm,, M, = a + bm, 

The following lemma which was proved in /6/, holds. 

Lemma. If Ml > 0, then the smallest general index of equation (3.1) which Cal? 

tained on the functions of Rh (T,ml,m2), is 

PO = +(A '- j/@--1) 

A = ch (o,T) ch (a,T) + y sh (u,T) sh (a,T) 

The function u" E Rh(T, m,,m,) on which $ is attained is unique (with the accuracy 
to the displacements with respect to time) and defined by the equations 

If :M,<O, then the corresponding smallest general index of (3.1) is 

be at- 

(3.4) 

of up 

(3.5) 

(3.6) 

The corresponding function u0 is defined by the formulas (3.5) in which T has been replaced 
by Tik (k is a natural number ensuring the minimum in (3.6)). 

in undefined parameter he l-m,, m,] appears in (3.4)- (3.6). Let us choose 1~ and the 
initial conditions for (3.2) so as to ensure the existence of a periodic solution of (3.2) for 
U = u" (t). To simplify the formulation of the problem we define the OXEN coordinate system 

so that Y(O)= 0. Then the solution of (3.2) has the form 

y’ (t) = y’ (0) I- s; 240 (z) dr - ct 
0 

(3.7) 

(3.8) 

For a T-periodic solution, Y'(T) = Y’(O). Therefore, setting in (3.7) t=T, we obtain h- 

c . Further, since y (T) = y (0) = 0, and when t= T in (3.8) yields 

Next we find the extrema of the function g(t) from (3.8) where Y' (0) is given by the 

formula (3.9) 
the solutions 

and u"(z) by the equations (3.5) with h = c. The extremal points represent 

of the equation y’(t) = 0. Carrying out the elementary manipulations we obtain 

rnin y(t)= - $(sl)* (771~ - c) (3.10) 

maxY(t)-$(~)2(m,+- c) 
f 

The condition (3.3) will hold if max y(t)< .so and min y (t) > - e. . The above two in- 

equalities can be replaced, according to (3.101, by a single inequality 

T<21/so+% B = min {(m, +- c) I/m, - c, (m2 - c) I/m, i c} (3.11) 

and in this manner we obtain the following result. 



Theorem. If M, >O, then the control u'(t) sought is given by the formula (3.5) with 
h = c. The minimum value of the general index is found from (3.4), and the period T must 

satisfy the inequality (3.11). 
If Ml< 0, then the control a"(t) sought is found from (3.5) with h = c, where T 

is replaced by T/k(k is a natural number ensuring the minimum in (3.6)). The minimum value 
of the general index is given by (3.6), and the period T/k must also satisfy (3.11). 

Let us obtain an estimate for the fundamental matrix X (0 of the system (3.1). Let the 
system be stable at L = d(t). In this case p'=O(p'<O is impossible since the system (3.1) 
cannot be asymptotically stable). This is clearly the case M~<O of the lemma. From (3.6) 
we obtain IAe+)/Ap-Ij=i, consequently IAkl<i and both multipliers of the system (3.1) 
are equal to unity in modulo /7/. In this case the following inequality holds: 

II X (t) R < C, (1 - A?)-"', t E [O, cm) (3.12) 

where C, is a constant depending on the parameters G b, ml, m,, h and Tlk. 
The estimate (3.12) is obtained as follows: we obtain the matrix X(T/k) in explicit form 

(this can be done by virtue of the piecewise constancy of the function u'(t)), then reduce the 
resulting second order matrix to diagonal form and raise it to an arbitrary power n. Analog- 
ous estimates can easily be obtained for the case p">O. The above estimates are necessary 
for checking the correctness of the linearization of the initial nonlinear equations. 

4. Solution of the problems of Sect.2. We use the theorem of Sect.3 to solve the 
problems of Sect.2. 

Pendulum with movable point of suspension. Carrying out in (2.2) the substitu- 
tion rp = xexp(--'l&t), we,obtain the following equation for x: 

(4.1) 

Let us set u(t)= F(t)l(m -k M). Then the equations (4.1) and (2.1) become equivalent to the 
equations (3.1) and (3.2), provided that the parameters have the following values: 

nr+&(i=i, 3, c-g, +, b=f (4.2) 

Substituting now (4.2) into (3.4)-(3.6) and (3.11), we obtain the solution of the problem. 
The necessary and sufficient condition for the pendulum to be asymptotically stable under the 
constraints shown is that the inequality 

P" < 'la k, (4.3) 

holds where $ is given by the formula (3.4) or (3.6) with the parameters given by (4.2). 
Moreover, since the linearized equation (2.2) becomes asymptotically stable when (4.3) holds, 
it follows, in accordance with the first Liapunov method /7/, that the solution 
of the corresponding nonlinear equation (1.2) is also asymptotically stable. 

cp=cp'=O 

Pendulum with movable rods. The construction in Fig.2 is described by the linear- 
ized equations (2.4) and (2.5). Let us make in (2.4) the substitution 

cp=sexp(-&t), R=F+2m~ 
This yields the following equation for 2: 

.y:" = 
[ 

3 w(t) + M+m v 
---ix- 2 2Rg+qLIr 5 1 (4.4) 

We denote u(t) = -Vr M"(l)&@), whereupon the equations (4.4) and (2.5) become equivalent to 
the equations (3.1) and (3.2) when the values of the parameters are 

(4.5) 

Substituting the parameters given in (4.5) into (3.4)- (3.6) and (3.11), we obtain the solu- 
tion of the problem. Woreover, the necessary and sufficient condition for the rod OD to be 
asymptotically stable is, that the inequality 

@' < kI(2LR) (4.6) 
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holds where u0 is given by the formula (3.4) or (3.61, with the parameters taken from (4.51. 
The construction in Fig.3 is described by the linearized equations (2.6) and (2.5). Let 

us make the following substitution in (2.6): 

cp=xesp l-&t--~Alp(&I 

and insert, into the resulting equation for x, the expression for A$,” from (2.5) 

According to the formulas (3.7) and (3.9), the quantity A$’ is small when the periods 
T are small (we assume that SC= y(t)). Consequently, when the rods DA and D.1’ oscillate 

at high frequencies, we can assume A$'= I:). in (4.7) and this reduces it to (4.4). The first 
Liapunov method /7/ implies then when (4.6) holds, the solution cp = q' = 0 Of the initial 
nonlinear equation (1.3) or (1.5) is asymptotically stable. Inequalities of the type (3.12) 
should be used to check the correctness of the linearization. 

The author thanks V. G. Demin, A. M. Fornal'skii and V. V. Aleksandrov for assessing the 
paper. 
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